Blog for Electronics world.
Car, Automobile, Automotive, Vehicle, Electronic circuit, digital project (includes source code) & also analog project are here.
Generation and implementation of sine wave table
Get link
Facebook
X
Pinterest
Email
Other Apps
-
You can download it in PDF format here: http://ifile.it/84hw0eg
My browser warns me that the link you have posted contains harmful software and it won't let me see it, even when I agree to the risk the URL won't load. Could you post the info here or fix the link? I would appreciate it very very much.
PWM is used in all sorts of power control and converter circuits. Some common examples include motor control, DC-DC converters, DC-AC inverters and lamp dimmers. There are numerous PWM controllers available that make the use and application of PWM quite easy. One of the most popular of such controllers is the versatile and ubiquitous SG3525 produced by multiple manufacturers – ST Microelectronics, Fairchild Semiconductors, On Semiconductors, to name a few. SG3525 is used extensively in DC-DC converters, DC-AC inverters, home UPS systems, solar inverters, power supplies, battery chargers and numerous other applications. With proper understanding, you can soon start using SG3525 yourself in such applications or any other application really that demands PWM control. Before going on to the description and application, let’s first take a look at the block diagram and the pin layout. Pins 1 (Inverting Input) and 2 (Non Inverting Input) are the inputs to the on-board error amplifier. If you a...
I had previously shown how to generate sinusoidal pulse width modulation (SPWM) signals using the ECCP module in a PIC for generating a sine wave output for use in DC-AC inverter. I have had requests from people asking how to generate the same SPWM signals with other microcontrollers that don't have the ECCP module, such as the super popular PIC16F877A. And so I had written another article where I showed how to generate sine wave using SPWM with the CCP module of a PIC. This concept, as I had mentioned in that tutorial, can be extended to use for any microcontroller that has a PWM module. And so, I’ve decided to demonstrate how to generate sine wave using SPWM with an Atmel AVR microcontroller. The microcontroller I’ve chosen is the ATMEGA16. However, the concept can be used on any AVR that has a PWM module. The output sine wave is to have a frequency of 50Hz. I have chosen to use a switching frequency of 16kHz for SPWM. So, here I talk about how to generate sine wave using sinusoi...
I had previously shown how to drive N-channel MOSFETs in low-side configuration. You can find the tutorial here: http://electel.blogspot.com/2016/12/low-side-mosfet-drive-circuits-and_23.html I’ve been requested to write a tutorial/article regarding high-side MOSFET drive. So, here I’ll talk about N-channel MOSFET high-side drive. Let’s first look at the common low side configuration. Fig. 1 - N-channel MOSFET configured as low-side switch Now let’s look at a MOSFET configured as a high-side switch. Fig. 2 - N-channel MOSFET configured as high-side switch You can quite easily see the difference between the high-side configuration and the low-side configuration. In the low-side configuration, the load is connected between the drain and +V, while the source is connected to ground. Thus, the gate drive is referenced to ground. So by applying a voltage of >7V (for Power MOSFETs) or >4V (for Logic Level MOSFETs), the MOSFET can be fully turned on. Now let’s talk about the high-si...
My browser warns me that the link you have posted contains harmful software and it won't let me see it, even when I agree to the risk the URL won't load. Could you post the info here or fix the link?
ReplyDeleteI would appreciate it very very much.